PRELIMINARY AMENDABENT
Serial No. 09/994,583
Page 2 of 18

Paragraph begimming on page 13, bine 20 and ending on page 13, Dine 23:
Each Encoder writes the encoded content into buffer memory 174. The Time Shift Post Process (TSPP) function 173 reads the content from the buffer memory 17A, generates Entry Point Data (EPD) files for each of the 3 encoded video streams, and writes those files to memory buffers accessible by the Server.

Paragraph hoginning on page 13, line 2\& and ending on page 14, line \&:
The Encoder Swhich 171 is utilized to eliminate the need to dedicate an encoder for each inpuf channel. The Encoder Switch 171 couples any of the, illustratively, N content streams provided by the Decoder 106 to any of the encoders 172. Where only a subset of the available content streams are to be time-shifted, the TSC 175 causes the encoder switch to couple only the appropriate subset of baseband content streams to respective encoders 172. In one embodiment, the encoder switch accepis audio and video streams from multiple broadcast channels and allocates the streams to encoders based on encoder availability. In this manner, the need to dedicate an encoder for each channel is eliminated.

Paragraph begimming on page 14, line 5 and ending on page i\&, line 14:
The encoders 172 selected by the encoder switch 170 receive input from broadcast receivers in, illustratively, a decoded baseband audiovisual format and encode the audio and video information according to the RAPEG-2 standard to provide, af respective outputs, MPEG-2 transport sireams suitable for use as play, fast forward and rewind streams. The use of such "play," "FF" and "RW" in response to user requests for corresponding "play," "FF" and "RW" functions provides the VCR-like user manipulations.

Paragrapin beginning on page id, line 12 and ending on pagie 15, līne 2: In an exemplary embodiment of the Invention, each of the encoders 172 comprises a so-called "all-in-one" that described in more detail in U.S. Patent No.

PRELIMAINARY AMENDAAENT
Serial No. 09/994,583
Page 3 of 18
$6,389,218$, issued May 14, 2002, which is incorporated herein by reference in its entirety. Briefly, the "all-in-one" encoder simultaneously produces RAPEG-2 complianí fast formard, fast reverse and normal play bitsireams from a sequence of video frames such as provided by an IEC 601 -format digital video baseband stream. The encoder subsamples the video sequence, extracting a plurality of frames from the video sequence and buffering the subsampled frames. Simultaneous with the subsampling and buffering, the source frames are encoded within a real-time encoder, e.g., an RAPEG-2 encoder. The buffered frames are recalled from the buffer and coupled to a second real-time encoder. The second encoder forms both the fast fonward and fast reverse bitstreams using a time multiplexing technique wherein a group of pictures (GOP) for the fast fonward stream can be formed, followed by the compression of the same GOP having the frames organized in reverse order. As such, the compressed GOPs are represented by the fast forward and fast reverse bitstreams. The play, fast formard, and fast reverse bitstreams for each GOP are organized into a file and stored on the mass storage device (e.g., disk drive array) of a file server.

IN THE CLAIAS

Please add new claims 2-42 as follows:
2. (newly added) In a system adapted to receive broadcast content from each of a plurality of content sources and forward said received broadcast content to a transport network for distribution to subscribers, a method comprising:
in response to a subscriber request for desired broadcast content, storing said desired broadcast content in a server;
forwarding said desired broadcast content to said transport network for distribution to said requesting subscriber; and

In response to a subscriber request for temporally shifted content associated with said desired broadcast content, fonwarding said stored broadcast conient to said fransport network for distribution to said requesting subscriber.

